Research Description: 

Our ultimate goal is to understand how cells, the basic units of life, sense changing environments and orchestrate specific responses to carry out life processes. Recent years have seen tremendous progress in identifying molecular components constituting structural, biochemical and mechanical networks that control various life processes. Less well developed is our understanding of how these components are precisely regulated to achieve the functional specificity within a living cell, which may be simultaneously reacting to multiple inputs from the changing environment. We believe the key lies in the spatiotemporal information encoded in a particular cellular context.

We are investigating the molecular mechanisms and functional roles of such spatiotemporal regulation by taking a “native biochemistry” approach. This allows us to unravel chemical mechanisms of life processes in the framework of cellular time and space, where molecular changes can be directly linked to functional effects. Combing genetically encoded fluorescent biosensors, superresolution imaging, targeted biochemical perturbations and mathematic modeling,  the Zhang laboratory is investigating the spatiotemporal regulation of cAMP/PKA, Ca2+/calcineurin, PI3K/Akt/mTOR, MAPK and AMPK pathways, in the context of energy metabolism, axon polarization and genesis, insulin secretion by β cells as well as tumorigenesis.

Graduate Program: 
Pharmaceutical Science
Selected Publications: 1. Hertel F, Mo GCH, Duwé S, Dedecker P, and Zhang J. RefSOFI for Mapping Nanoscale Organization of Protein-protein Interactions in Living cells. Cell Rep. 2016, 14(2):390-400. 2. Sample V, Ramamurthy S, Gorshkova K, Ronnett GV and Zhang J. Polarized activities of AMPK and BRSK in primary hippocampal neurons. Mol Biol Cell, 2015, 26(10):1935-46. 3. Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW and Zhang J. Dynamic Visualization of mTORC1 Activity in Living Cells. Cell Rep. 2015, 10(10): 1767-1777. 4. Mehta S, Aye-Han N, Ganesan A, Oldach L, Gorshkov K, and Zhang J. Calmodulin-controlled Spatial Decoding of Oscillatory Ca2+ Signals by Calcineurin. eLife, 2014, e03765. 5. Sample V*, DiPilato LM*, Yang J*, Ni Q, Saucerman JJ† and Zhang J†. Regulation of Nuclear PKA revealed by spatiotemporal manipulation of cAMP. *Equal contribution. †Co-corresponding authors. Nat. Chem. Biol. 2012; 8(4): 375-82.